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Stability of Numerical Schemes Solving 
Quasi-Linear Wave Equations 

By A. Y. Le Roux 

Abstract. A generalization of the Riemann invariants for quasi-linear wave equations of the 
type a 2w/at2 = af(aw/lax)/lax, which includes the shock curves, is proposed and is used to 
solve the Riemann problem. Three numerical schemes, whose accuracy is of order one (the 
Lax-Friedrichs scheme and two extensions of the upstreaming scheme), are constructed by 
L2-projection, onto piecewise constant functions, of the solutions of a set of Riemann 
problems. They are stable in the L?-norm for a class of wave equations, including a 
nonlinear model of extensible strings, which are not genuinely nonlinear. The problem with 
boundary conditions is detailed, as is its treatment, by the numerical schemes. 

I. Introduction. Let T > 0. We consider the quasi-linear wave equation 

(1) a2 .= a a 
at2 ax ax))' 

on Q = ]O, l[ x JO, T[. The functionf E C 1(R) is increasing, to make this a problem 
of hyperbolic type, and such that f(O) = 0. The initial conditions are 

(2) w(x, O) = wo(x), aw (x, O) = vo(x) for x E ]O, I 

with wo in Wl o?(10, 1[) and vo in L?(]O, 1[). The boundary conditions are 

(3) w(O, t) = w(l, t) = 0 fort ElO, l[. 
For compatibility between (2) and (3), wo is assumed to be zero at x = 0 and 

x = 1. Equation (1) may be written as a system of two equations involving 
u = aw/ax and v = aw/at. We get, for (x, t) e Q, 

au av 
vat= ax, 

(5) aot aa () 
The initial and boundary conditions become, with uo = dwo/dx, 

(6) u(x, O) = uo(x) for x E ]O,1[I 

(7) v(x, O) = vo(x) for w E O,[, 

(8) v(O, t) = v(l, t) = 0 fort E]0, T[. 

Such a system is often called a p-system; see [11], [12], [13]. The Riemann 
problem, the solution of which is shaped with shocks, rarefaction waves, or 
constant states, is solved in Section II. How to build this solution is detailed, and 
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then is improved for the approximation. This is set up in Section III for the 
Lax-Friedrichs scheme and two extensions of the upstreaming scheme. An applica- 
tion to a model of extensible strings, for which If I is a convex function, is proposed 
in Section IV. This model presents the property to have bounded convex invariant 
sets in the plane (u, v), and, since mainly Riemann problems and L2-projections 
are used, we derive, in Section V, the LX stability of the schemes introduced in 
Section III, provided that a stability condition is satisfied. 

Such a property, to have bounded convex invariant sets in the phase plane, is 
also true for other important applications and implies the stability of the same 
numerical schemes in the L'-norm. This is proved for the Shallow Water model, in 
[5] and [6], and for the isentropic gas dynamics equations, with a wide class of 
pressure laws, and for some supersonic models in [7]. When source terms appear, 
the increase of these sets may be estimated rather easily, and the stablity condition 
does not become too restrictive for computations with large values of the time. 

II. The Riemann Problem. We consider, in this section, the problem (4), (5) on 
R x ]O, T[, with the initial data 

(u(x, 0), v(x, ?)) (u_, v_) if x < O 

For a fixed t in ]O, T[, the solution u of (4), (5), (9) will present mainly three 
kinds of shape. Indeed, shocks and rarefaction waves can occur, separated by 
constant states. 

Since, for a rarefaction wave, both u and v are locally monotonic functions of x, 
we can express v as a function of u by eliminating x. We introduce this function 
v(u) into (4) and (5) and obtain two quasi-linear equations on u 

au ~ au au au 
(10) = v'(u) -, v'(U)-o =Pf'(u)- aaxat ax~ 

Next, we claim that these equations give the same speed of propagation for the 
data, that is v'(u) = - ft(U)112. 

By integrating this differential equation, we get the Riemann invariants 

(11) v(u) = +g(u) + C with g(u) = fy) dy, 

where C is some constant. The sign in (11) is imposed by the sense of the 
propagation. Knowing this, the first equation in (10) permits us now to get u, when 
the scalar equation has a regular solution; that is if the convexity of v(u) does not 
require a solution with shock satisfying an entropy condition. 

Similar arguments are developed to analyze a shock, which is a discontinuity of 
the first kind for u. Writing the Rankine-Hugoniot relations, we obtain the speed 
dx/dt of this shock and a compatibility condition, which shows that the same 
speed is given by both equations. Denoting by ul and u2 the values of u on each 
side of the curve, along which the discontinuity travels, of equation x = x(t), and, 
similarly, by v1 and v2 the values of v, we have 

(12) 
dx f(U ) -f(U2) V1 - V2 

dt VIV1-V2 U1-U2 
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The last equality gives 

(13) _ -v=(u2-u) [ )fl(ul) - f(U2) 11/2 (13) V - V I(U2 
- 

1 Ul- U2 J 

which is to be compared with (11). Then, at each point of the phase plane, two 
tangent increasing curves can be drawn, with the same sense of convexity; their 
equations are given by (11), (13). Two similar decreasing curves can be drawn at 
the same point. Using, now, the entropy condition (see [14], [3]), for the scalar 
equation, we know when a shock must appear. We can then give the same equation 
for shock or rarefaction curves. This is detailed in the following; see also [17]. 

Starting from a point (uo, vo) of the phase plane, we look at the solutions which 
have a positive speed of propagation. Letf(y; uo, u) be the value of the convex hull 
of f on [uo, u], if u > uo, or of the concave hull of f on [u, uo], if u < uo, at the point 
y of this interval. We define 

(14) G(u,uo)=f 4 y; uo, u)y. 

Note that for u > uo, we get 

0 g(u) - g(uo) if f is convex, 

(f(u)- - f(u0))(u - u0) if f is concave. 

For a general functon f, G(u, uo) becomes complicated. The generalized Rie- 
mann invariant with a positive propagation and starting from (uo, vo) is defined by 

(15) v = vo- G(u, uo). 

For a negative propagation, we obtain, similarly, the invariant 

(16) v = vo + G(u, uO), 
with G defined as in (14). 

We now solve the Riemann problem (4), (5), (9). Writing (15) for (u, v) = 

(u+, v+) and (16) for (u, v) = (u, v_), we find (uo, vO) at the intersection of these 
two curves, if it does exist. The curve connecting (uo, vO) to (u+, v+) describes the 
wave which has a positive speed. It is the solution of a scalar first order equation, 
given by putting (15) into the first equation of (10), for a rarefaction wave, or its 
speed is obtained obviously for a shock. The wave with a negative speed, which 
connects (uo, vo) to (u_, v_), is similarly given by (16). The solution is equal to 
(uo, vo) for x = 0 and t > 0. This technique builds the solution of the Riemann 
problem when the curves intersect; a sufficient condition to ensure it is the 
following 

(17) lim jg(R)j= +oo. 

Moreover, the entropy condition proposed by T. P. Liu in [8] (see also [14]) is 
verified by this solution, and that implies uniqueness. Writing at a point (x, t) of 
discontinuity of the solution 

(18) cr(k, 1; u,, vl) =f(k) -f(ul) 
i-ul 
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with u1 = u(x - 0, t), v1 = v(x - 0, t), and (k, 1) satisfying the shock condition 

(19) ( I-v)2 = (f(u1) - f(k))(u-k), 

this condition is the following, with u2 = u(x + 0, t), v2 = v(x + 0, t) 

(20) V k E I(uP, U2) a(k, 1; u, vI) 6 a(U2, V2; ul, vI) (= _dt) 

Here, I(a, /3) is a notation for the interval [Inf(a, /3), Sup(a, /3)]. 
For instance, we get, when the propagation has a positive speed, that (20) implies 

(21) ~~~f(U2) - f(UI) = m ff(k) - f(ul) (21) (2)f)= Min ( 
U2 - U1 k E I(u2,U) k - u 

which is exactly the entropy condition (E) of 0. A. Oleinik in [14]; (20) is its 
generalization for the system (4), (5). A maximum appears in (21) for a shock with 
a negative speed. 

From this construction of the solution of the Riemann problem, we are able to 
propose a construction of some numerical schemes. Their stability, which depends 
on the stability of the Riemann problem and is ensured when If I is a convex 
function, will be stated later, in Sections IV and V. 

III. Approximation by Numerical Schemes. For I E N and q > 0, let h = 1/I be 
the space meshsize and qh the time meshsize. We introduce the intervals 

Ii = [(i-1)h, (i + 1)h[ for i = 0, 1,.. I 

J=[ nqh, (n + 1) qh [ for n =0, 1, . . ., N = 1 + [ T/qh]. 

The solution of (4), (5), (6), (7), (8) will be approached by (uh, vh), which has a 
constant value (ui, vi) on each Ii x J,. The initial condition is introduced by 

(22) u,=h uo(x) dx, vo = h vo(x) dx, i E { I,... i}, 

and the boundary conditions by 

(23) v&n= Vjn=0, n=0,...,N. 

Let n > 0. We suppose that all the values (uin, vin) for i = 1,... , I-1 are 
known, and we propose to build the (uin+ 1, vin+ 1). Solving the Riemann problem 
(4), (5), (9), with the initial condition translated of (i + 1)h given by 

(U+, V+) = (U 
n 

1, vn'1), (U_, V_) = (Ui1, Vi ), 

for x = (i + 1)h and t > nqh, i I {1,... , I - 2), we find that the solution is 
equal to a constant (Uin+ 1/2, Vn+ 1/2) at these points, which is defined by 

(24) +1/2 = Vi1n+ + G(un+, uI.in+2) = - G(uin, u,+1/2), 

from (15) and (16). This is also true for the solution of the problem (4), (5) with the 
Cauchy data uh(x, nqh) at the time t = nqh, when two adjacent Riemann problems 
cannot interfere with themselves; that is when (t - nqh) is small enough. This will 
correspond to a stability condition which requires that the speed is still less than 
1/2q; that is more restrictive than the well-known Courant-Friedrichs-Lewy condi- 
tion, for which we have 1/ q. 
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For x = h/2, we consider only the wave with a positive speed which gives a 
value (Uj4/2, Vln/2) defined by 

(25) v n = -G(ujn, ujn12), vj/2 = 0. 

Similarly for x = (I - 1/2)h, a value (U - 1 /2, VI iS defined by 

(26) vin_ 1 = G(uAn_ 1, UI,_ 1/2), Vl 1/2 = 0. 

Next, for i = 1, .. , I - 1, we integrate by parts the equations (4), (5), on the 
set Ii x Jn, on three sides of which u and v are known. This gives the L2-projection 
(un+ 1, vin+1) on the fourth side; we get 

(27) u = u + q(+12 - v-1/2), vin = vi + q(f(u/+ 1/2) -f(uin_ 1/2)) 

The scheme (24), (27) is a generalization of the Godunov scheme. For the linear 
problem, that is for f(u) = k2u with k > 0, (24) and (27) are equivalent to the 
upstreaming scheme on each Riemann invariant (see [4]), 

(28) (v + ku)n+1 = (v + ku)n + qk{(v + ku)n+ -(v + ku)n}, 

(v - ku)n+1 = (v - ku)n - qk{(v - ku) - (v - ku) n . 

To compute UinA/2 from (24) is often hard when shocks occur. A small error is 
made by replacing G(u, uo) by g(u) - g(uo), even when un is not close to u.n+ 1. That 
is similar to write that only rarefaction waves can happen. Nevertheless, we get 
another scheme, which is easier to compute and gives relatively good profiles for 
shocks. This is the following 

(29) Vl=+ 1/2 2 { + l + v1 + g(u1 + 1) - g(Ui)} 

+1/2= - v) + g(uI+ 1) + g(Ui)} 

and (27) as above. Near the boundaries, we set 

(30) v1>/2 = V_ 1/2 = 0, g(ul/2) = V1 + g(u1), g(UIn_1/2) = -V 1 + g(U'_ 1). 

This scheme is also the same scheme as (28) for the linear problem. 
The Lax-Friedrichs scheme may be fashioned the same way. We suppose that I 

is even and take only the intervals Ij with a length equal to 2h, at time nqh, with 
j + n odd. Solving the Riemann problem (4), (5), (9), with 

(u+, V+) = (u,+1, v1+'), (u, V) = (u1L1 V,_1), 

and integrating (4) and (5) by parts on Ii X Jn, we get, as above, the L2-projection 
of its solution on Ii at time (n + I)qh. This is the value (uin+ 1, vin+ 1) given by 

ui 2 { u,+ I + uin_1 } + q 
{v+ I v_ Vi}, 

(31) 1 

Vn1= 1 + vLn 1} + q {f(uin) 

which is the Lax-Friedrichs scheme. This is available for two adjacent Riemann 
problems provided that the solution is constant at x = ih, for t E Jn, which 
requires the Courant-Friedrichs-Lewy condition. 
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The boundary conditions are introduced as follows, for n even, 

(32) vn+1 = vn+1 0 O, un+1 = un + qvn, uj 1 = u1I - qv11. 

No conditions are needed for n odd in (31). We have, from (31) and (32), for n 
odd 

E 
Ui 

n+ 1 + Us ) + Un- 

1 i<I- 1~ 2<j<I-2 1<i<I- 1 

Since the restrictions of Io and I, on [0, 1] have a length equal to h, this gives the 
conservation of the integral of u. We have for all n 

(33) f u,(x, (n + I)qh) dx = f uh(x, nqh) dx. 

From (27), this conservation is obviously realized by the two other schemes. 

IV. A Model of Extensible Strings. A string of length 1 is initially put to the 
length 1(1 + X), where X is a nonnegative constant which is proportional to the 
tension. Next, initial position and speed are prescribed at each point of this string, 
which is fastened at each bound. Neglecting the gravity, the transversal displace- 
ment w(x, t) of the point x E ]O, I[ of the string, in its steady state, follows the 
wave nonlinear equation 

a2w a E11aw'l 
at2 - ax LVax)Jl 

where f is given by 

f(u) = cu I + 2 

with c depending on the mechanical properties of the string. This function f is odd 
and strictly increasing; it admits the two asymptotes c(u ? 1), and f' is bounded 
by c. 

Moreover If is a convex function. For u close to zero, we have, by a Taylor 
expansion up to the order 3 (a greater order does not give an increasing function), 

f(u) -c f+ Au + 2 (IX3. 

The linear model corresponds to the first term for X # 0. If X is equal to zero, 
that is when the string is submitted to no initial tension, the linear model has no 
meaning, while a nonlinear model withf or its equivalent cu3/2 may be used. The 
function g corresponding to f by (11) to solve (29) is not easy to compute, but this 
step may be realized by an approximation technique. Solving (24) is still harder and 
also needs a numerical method; for example, a few iterations of the Newton 
method (the derivative is known) may be performed. 

When f is supposed to be an increasing function, convex for u > 0 and concave 
for u < 0, which is equivalent to say that If I is a convex function if f(O) is zero, the 
stability of the Riemann problem (4), (5), (9) is ensured. 
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THEOREM 1. For IfI convex, the Riemann problem (4), (5), (9) has a unique weak 
solution, whose values lie in the bounded convex set of the phase plane 

(34) Ko = {(u, v) E R2, IvI + I g(u)I < MO}, 

with Mo = Max{lv4l + Ig(u-)I, Iv+I + Ig(u+)l}. 

This result is similar to those of T. P. Liu, J. Smoller, or B. L. Keyfitz and H. C. 
Kranzer. See [2], [8], [9], [10], [15], [16]. 

Proof. Since I gl is convex, (17) is satisfied and Ko is obviously a bounded convex 
set. The existence and the uniqueness follow from the construction which is 
developed above, and from T. P. Liu [8], provided that the entropy condition (20) is 
verified. 

The stationary value (uo, vO) is given, as previously, from (14) by 

v= v0-G(u+, uo), v= vo + G(u, u0). 

Two main cases can occur to prove that the solution has all its values in Ko. 
Case 1. uo 4 I(u_, u+). If uo > Max(u_, u+), then v_ < vo < v , and the solution 

presents two shocks, with speeds of different sign. Let us look at the wave which 
has a positive speed. A unique value u- exists such that the concave hull of f on 
[u + uo] coincides withf on [u +, ii] and is a straight line of slope 

(f(uo) - f(u))/ (uo - U) 

on [ui, uo]. For u+ < 0, u- is negative and not equal to u+; a rarefaction wave 
appears, which is ruled by the scalar equation 

a-+ a-[g(u) =0, at axL' 

with u E [u+, u] and v = v+ + g(u+) - g(u). 
Since v_ < vo < v < v , uo > u- > u > u , we have 

Iv + g(u)l = Iv+ +g(u+)l < Mo, 

and 

v-g(u) < v+-g(u+) < Mo, v-g(u) > vo-g(uo). 

The values u- and uo are those on both sides of a shock, which appears when uo is 
positive. By the Cauchy-Schwarz inequality, we get 

g(u0) - g(u) =fo f'(y) 'dy {[<f(uo) - q( )][uo -j}1/2 

thus, we have 

g(uo) - g(ut) - G(ut, uo). 
Since 

g(u+, uo) = g(u+) -g(u-) + G(u-, uo), 

that is, exactly, 

vO + g(uo) < v- +g(u-) = v+ +g(u+) < Mo, 

we have also 

VO- g(uo) < v +-g(u+) < Mo. 
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For the wave with a negative speed, a value u, which is negative or equal to u_, 
exists such that a rarefaction wave with values in [u_, uj and a shock appears. We 
get similar estimates as above for the rarefaction wave 

lv - = Iv-g(u_)l < MO, v + g(u) > v_ + g(u) > -MO, 
v + g(u) < vo + g(uo), 

which is less than v+ + g(u+), as proved above. By the Cauchy-Schwarz inequal- 
ity, we get 

g(uo) - g(u-) < -G(u-, uo), 
which gives 

Vo- g(uO) > v - g(u) > -Mo. 

For the rarefaction wave with a positive speed, we have now v - g(u) > -Mo. 
We have also 

vo + g(uo) > v_ + g(u) > -Mo, 

and then all the values of the solution belong to Ko. 
When a shock with a positive speed appears, we have 

Mmn f(k) - f(uo) 
_ 

f(U) - f(uo) 
kE[ a,uo] k - uo u -uo 

from a property of the concave hull. This is the entropy condition (21). A similar 
condition is obtained in the same way for a shock with a negative speed. The same 
estimates may be derived when uo < Min(u_, u+) since v_ > vo > v+, and a 
convex hull arises in this case. 

Case 2. uo E I(u_, u+). If u+ < u_, then vo < Max(v_, v+), and if uo > 0, a 
rarefaction wave with a negative speed appears such that 

v_-g(u_) = v-g(u), uO < u < u_, vO < v < v_. 

For v > 0, we have 

IvI + Ig(u)I = v + g(u) < v_ + g(u_) < Mo, 

and, for v > 0, 

l vI + I g(u)l = -v + g(u) = -(v_-g(u_)) < Mo. 

The wave with a positive speed may contain a rarefaction wave and a shock, 
whose values go from uo to u-, defined as above. We prove that the values of the 
solution lie in Ko and that the entropy condition is verified by using the same 

arguments as in the first case, since uo > u+. For uo < 0 or for u_ < u+, we have a 
similar proof. Theorem 1 is proved. 

V. Stability of the Numerical Schemes. We suppose that If I is a convex function 
and consider the problem (4), (5) with the initial and boundary conditions (6), (7), 
(8). We recall that f is an increasing function and that uo and vo belong to 
L?(]O, 1[). A convex bounded set of the phase plane Ko is defined as in (34), with 

Mo = IVOIL-(O1) + I g(UO)IL-(O 1)' 
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We have the following 

THEOREM 2. For any h > 0, the approximate solution, built by the Lax-Friedrichs 
scheme (31) or by one of the two schemes (24), (27) and (29), (27), has all its values in 
Ko if the stability condition 

(35) q Sup <f(k) <a, 
I g(k)l < M0 

is verified with a = 1 for (31) and a = 1/2 for (24), (27) or (29), (27). 

Note that (35) is not really harder for (24), (27) or (29), (27) than for (31) since Ii 
has a length equal to 2h for this last scheme. 

Proof. We first consider those schemes at an interior point (ih, nqh). The 
boundary points will be treated later. For the Lax-Friedrichs scheme (31), or for 
the scheme (24), (27), the value (ui +1, vin +1) is the L2 projection of the solution of 
a Riemann problem, whose values lie in the convex set Ko. Obviously this 
projection also belongs to Ko. The stability condition (35) implies that two adjacent 
Riemann problems cannot produce two waves which meet each other in the time 
interval J, 

The scheme (29), (27) does not correspond to the solution of a Riemann 
problem, and we have to consider several cases. In order to limit the number of 
these, we give the following form to (27) 

(36) un/I1 = uin + 2q(vin+ /2 - v,n) vin+' 1 = vin + 2q(f(u+ 1/2) - AUin)) 

(37) ui,2 =ui + 2q(vin - v,i_ 1/2) V,2 = vi + 2q(Jf(ui) - f(u, 1/2)) 

We obviously have 
+ 2i+1 = I 2 ] Un+11 n+1 = V l [Vn+1 + Vn+11] 

Then (Uin+ 
I 

vin+I) belongs to Ko if the values defined by (36), (37) are in Ko. 
We suppose that all the (ujn, vjn) are in Ko, forj = 1, . . . , I - 1. By (29), we get 

that (Ujn+ 1/2' VJJn+ 1/2) belongs to Ko forj = 1, . . ., I - 2. 
Let us consider (36) now. Three cases may appear: 
Case 1. 0 S uin < uin+ 1/2. We have by (29) 

V,i+1/- Vi = g(Uin+ I/2) - g(ui ) > 0, 

which gives 

I= uin + 2q(g(Ui+1/2) - 

Introducing - E [uIin Uin+ 1/21 such that 

g(U,+1/2) 
- 

g(Uin ) (U,+1/2 uin)- 

we get 

(38) 
uin+ 

= (1 - 2q fQq) )uin + 2q Af'q) U/+l/2n 

where both coefficients of uin and Uin are nonnegative by (35). Thus, we have 
0 Ui < ux 1 

i u++1/2I 
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On the other hand, we introduce c E [uir Uih- 1/21 such that 

f(uin+l/2) -f(uin) = 
(g(Ui+1/2) -f(uin)), 

by using the average formula 

"n "n 

L$+1/2f,(y) d4 ~ fU,+i/2f'(y~) d4 
From (29) we get 

(39) v, + = vi + 2q f(/ (Vin+/2 -vin) 

and by (35) vinl+ 1 belongs to [Vin, Vin+ 1/21] as above for unl+ . 
Now, we have, since g is an increasing function, 

(40) Vi+ 1/2 + g(ui+ 1/2) > v, 1 + g(Ui 1 ) > Vi + g(Uin), 

and from g(unl+ 1) > 0 we get 

(41) Vn+I - g(un + 1) < v,n1 + g(Un ) 

We have, for some t in [uin, un+ 1] 

g(U,,1 ) - 

g(Uin 
) 

(Uin1 
- 

Un 

thus, 

(42) 
vi 

l - g(u, X ) = 
Vi- 

g(uin) + 2q ( - )(v,+1/2 - 
Vin)- 

By the Cauchy-Schwarz inequality, 

(Uin 2) - g(Un) < {[f(Un+ 1/2) -f(ui) ][Ui+ 1/2 Ui- ]1}2, 

which gives to the power two 

% f(Uin+1/2) 
- 

f(Uin) g(Ui/21/2) -g(Uin) 

(Un12)- g(Uin) Uin+1/2 -Uin 

Since g is a convex increasing function on [uin, Uin+ 1/21] we have 

g(k) - g(ui ) < 

+12 
i 

n 

thus, for k = uin 
+ 1, we obtain f'()< \ f'(n) < f'(6) 

The last term in (42) is now nonnegative, and we get 

(43) VinI- g(Uin ) > vi g(Ui-). 

We deduce from (40), (41), (43) that (uVnl+ 1, Vinl+ 1) belongs to Ko. 
Case 2. uin < Uin+ 1/2 < 0. The functionf is concave on [Uin, Uin+ 1/2] and 

G(un Uin +l/2) = g(uin) - 

Then we solve a particular Riemann problem, and (36) gives its L2-projection. We 
obtain that (uin + 1, vin + 1) belongs to Ko. 

Case 3. uin < 0 < Uin+ 1/2. We get, from (38), (39), 

Uin < Uin+ 1 < Uin Vin < Vin+ 1 v1 i+1/2' i,I Vin+1/2' 
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Thus we get (40). We suppose now that u/,I is negative and have, obviously, 
(44) vin+1 - g(ui,l) > vin + g(uin). 

We also have 

(45) -, 1 1 _ g(uinl I) S V,n+ 2 ( / i+ 1/2 + 9(u, +1/2)). 

To prove (45), we state the following formula for a (= Uin) < 0 <x (= un+ 1/2)' 

(46) F(x, a) = 2q f(x) - f(a)-I J 
2 -)) y ) - g(x) < 0. 

This is true for x = 0, as it was shown in Case 2. We have 

aF _ _ _ _ _ _ _ _ 

ax (x, a) = [2q{ f(x) '(a + 2q(g(x)-g(a))) }- ] x) 

which is negative by (35). We now integrate it with respect to x on [0, x] and add 
F(O, a) < 0, to get (46). 

The inequality (45) follows from 

-I g(ui,+1I) = Vin+1/2 + F(Un+1/21 Uin) < tin+ 121 

and we obtain from (40), (44) and (45) that (uinV+ 1, v,in+ 1) belongs to Ko. 
For Uin +1 > 0, we use similar arguments. We get, obviously, 

(47) vn+ 1 - 
g(Uin+1) 

< Vin1/2 + 

and we prove the formula 

(48) H(x, a) = 2q{f(x) - f(a) - 
a 

a+2q(g(x) -g(a)) dy > 0. 

We have 

a (x, a) = 2q { f - Vf'(a + 2q(g(x)-g(a))) }, 
which is nonnegative from the convexity of f, integrate on [xo, x] with xo such that 

a + 2q(g(xo) - g(a)) = 0, 

and add H(xo, a) which is obviously positive. We derive from (48) that 

'I+ 
_ 

'gIu.nl+J 
> Vin > Vi + g(u )i 

and then (uinj+ 1, vin1+ 1) belongs to Ko. 
All other cases, that is when un+ 1/2 < uin, are similar to one of the three cases 

above, and an analogue of this proof would show that (u.n + 1, vin + 1) belongs to Ko 
We now consider a boundary point, for example at x = 0. For the Lax- 

Friedrichs scheme (31), this occurs only for n even, and (uon+ , v n+I) is given by 
(32). The straight line 

V = VI +-(Ut - U) 
q 

cuts the axis v = 0 inside Ko, by (35), thus (uon+I, vn+I ) belongs to Ko. 
For the scheme (24), (27), we get that (Ujn/2, Vjn/2), defined by (25), is in Ko by 

writing that the part of the generalized Riemann invariant with a positive speed, 
from (u n, v n) to its intersection with the axis v = 0, lies in KO. This uses similar 
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arguments as those for Theorem 1. Now (27) is the L2-projection of a solution with 
values in the convex set Ko, thus (u'+ 1, vn + 1) is in Ko 

For the scheme (29), (27), (Un/2, vjn>2) obviously belongs to Ko and then 
(u n+1, vn+1) is in Ko, from the first part of this proof. 

Similar arguments may be used to state the stability at x = 1, and then Theorem 
2 is proved. 

VI. Conclusion. The technique used to build the schemes (24), (27) and (29), (27) 
is suitable for other first order hyperbolic systems such as the shallow water model 
or some equations of gas dynamics, as stated in the introduction; see [5], [6], [7]. 

The stability of the Glimm scheme (see [1]) may be deduced from Theorem 1. 
Indeed, this scheme uses the same mesh as the Lax-Friedrichs scheme, with an 
interpolation at a random point instead of a projection, to build (u.n+1, v/n+) at 
each step. Note that the convexity is not used explicitly. 

The numerical tests show a good treatment of the reflection of the waves on the 
boundaries, by (25), (26), (30) or (32). From (33), it is easy to come back to the 
wave equation (1) since the boundary conditions (3) are satisfied. The schemes (24), 
(27) and (29), (27) give two approximate solutions whose difference is very small. 
These two schemes do not depend on the value of q, provided that the stability 
condition (35) is verified; moreover, the stability seems to remain true even for 
a = 1. 

The Lax-Friedrichs scheme gives results which are subordinate to the value of q, 
the best of them are found with the greatest value of q satisfying (35). However, the 
speeds are weakened, which implies that the displacement is deadened. This 
phenomenon does not appear with significance for the two other schemes, for 
which the amount of viscosity is smaller; they may be corrected up to order two 
but on a few points; see [4]. 

Laboratoire d'Analyse Numerique 
INSA, 20, avenue des Buttes de Coesmes 
35043 Rennes Cedex, France 

1. J. GLIMM, "Solutions in the large for nonlinear hyperbolic systems of equations," Comm. Pure 
Appl. Math., v. 18, 1965, pp. 697-715. 

2. B. L. KEYFITZ & H. C. KRANZER, "Existence and uniqueness of entropy solutions to the Riemann 
problem for hyperbolic systems of two non linear conservation laws," J. Differential Equations, v. 27, 
1978, pp.444-476. 

3. A. Y. LE Roux, Approximation de Quelques Problemes Hyperboliques Non Lineaires, These, 
Rennes, 1979. 

4. A. Y. LE Roux, "Convergence of an accurate scheme for quasilinear equations," RA.I.RO. (To 
appear.) 

5. A. Y. LE Roux, "Stabilite numerique de modeles oceaniques non lineaires," C. R. Acad. Sci. Paris, 
v. 290, 1980, pp. 885-888. 

6. A. Y. LE Roux, Stabilite de Schema Nunmeriques Adaptes a Certains Modeles Oceaniques Non 
Lineaires, Contract Report-CNEXO, 78.1963, Mars 1980. 

7. A. Y. LE Roux, "Numerical stability for some equations of gas dynamics." (To appear.) 
8. T. P. LwU, "Uniqueness of weak solutions of the Cauchy problem for general 2 x 2 conservation 

laws," J. Differential Equations, v. 20, 1976, pp. 369-388. 
9. T. P. LwU, "The entropy condition and the admissibility of shocks," J. Math. Anal. Appl., v. 53, 

1976, pp. 78-88. 
10. T. P. Liu, "Existence and uniqueness theorems for Riemann problems," Trans. Amer. Math. Soc., 

V. 212, 1975, pp. 375-382. 



NUMERICAL SCHEMES SOLVING QUASI-LINEAR WAVE EQUATIONS 105 

11. T. NISHIDA, "Global solutions for an initial boundary value problem of a quasilinear hyperbolic 
system," Proc. Japan Acad., v. 44, 1968, pp. 642-648. 

12. T. NISHIDA & J. A. SMOLLER, "Solutions in the large for some non linear hyperbolic conservation 
laws," Comm. Pure Appl. Math., v. 26, 1973, pp. 183-200. 

13. T. NISHIDA & J. A. SMOLLER, "Mixed problem for non linear conservation laws," J. Differential 
Equations, v. 23, 1977, pp. 244-269. 

14. J. OLEINIK, "Uniqueness and stability of the generalized solution of the Cauchy problem for a 
quasilinear equaton," Amer. Math. Soc. Transl., (2), v. 33, 1963, pp. 285-290. 

15. J. A. SMOLLER, "On the solution of the Riemann problem with general step data for an extended 
class of hyperbolic systems," Michigan Math. J., v. 16, 1969, pp. 201-210. 

16. J. A. SMOLLER, "A uniqueness theorem for Riemann problems," Arch. Rational Mech. Anal., v. 33, 
1969, pp. 110- 115. 

17. B. WENDROFF, "The Riemann problem for materials with nonconvex equation of state. I. 
Isentropic flow," J. Math. Anal. Appl., v. 38, 1977, pp. 454-466; "II. General flow," J. Math. Anal. 
Appl., v. 38, 1977, pp. 640-658. 


	Cit r100_c100: 
	Cit r91_c91: 
	Cit r99_c99: 


